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Abstract-- A simulated battlefield, containing airborne lasers that shoot
ballistic missiles down, provides an excellent test-bed for developing adaptive
controllers. An airborne laser fire controller, which  can adapt the strategy it uses
for target selection, is developed. The approach is to transform a knowledge-
based controller into an adaptable connectionist representation, use supervised
training to initialize the weights so that the adaptable controller mimics the
knowledge-based controller, and then use directed search with simulation-based
performance evaluation to continuously adapt the controller behavior to the
dynamic environmental conditions. New knowledge can be directly extracted
from the automatically discovered controllers. Three directed search methods are
characterized for production training, and compared with the better characterized
gradient descent methods commonly used for supervised training. Automated
discovery of improved controllers is demonstrated, as is automated adaptation of
controller behavior to changes in environmental conditions.

Keywords: Adaptive control, simulation, complex system, evolutionary
programming, airborne laser, neural network.

1. Introduction

Simulation is playing an increasingly important role in training, analysis, and operational
planning for many complex systems. In the powerful distributed object-oriented simulation
approach, software actors emulate the various system elements, and interact through asynchronous
message passing [1]. An important class of complex system contains entities which can adapt their
behavior to make themselves more effective within their complex, dynamic environment [2-4]. These
entities have a component which perceives the state of the entity and its environment, and selects an
action from a set of possible actions. The behavior of an entity is its mapping from the space of all
possible perceived states onto the set of all actions the entity is capable of performing [5]. When an
entity continuously selects its own actions, the behavior forms the basis of a controller for the entity.

This paper begins by developing a traditional knowledge-based controller to select targets for an
Airborne Laser (ABL) theater missile defense system. The fire controller inputs are the parameters
associated with possibly dozens of engageable boosting missiles. The fire controller output specifies
which of the missiles to intercept next. This knowledge-based controller incorporates the expertise of
mission analysts and design engineers, and can be encapsulated in the rule: select that target which
can be destroyed in the shortest time. Section 2 describes the ABL, the environment in which it
operates, the role of the fire controller, and the knowledge-based expert controller.

This knowledge-based fire controller, though it performs much like a human operator, is static.
Furthermore, it arose from experience with a limited set of scripted scenarios. Theater missile defense
occurs in a complex system that contains many interacting elements (transporter/launchers, missiles,
radars, surveillance and combat aircraft, air and ground based interceptors, troop units, command
centers, weather, etc.). Tactics can evolve on both sides. For example, new spatial or temporal missile
launch patterns may be found to be more effective against a baseline missile interceptor doctrine. In
this complex environment, a controller must be able to adapt its behavior. The software controller of
a simulated entity in a simulation must likewise have the ability to adapt its behavior.

The ability to adapt to a dynamic environment is achieved by transforming the knowledge-based
controller into an adaptable connectionist representation, and then using directed search methods to
find new behaviors that are more effective [6]. The directed search Evaluation of the performance of
trial controllers, which is fundamental to any search, is accomplished  by running simulations of the
complex battlefield. A connectionist configuration, the multi-linear network [7], provides an
adaptable representation of the fire controller. The multi-linear network representation of the fire
controller is described in Section 3.
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There are two types of training that apply to adaptable controllers. The first type, supervised
training, is a search for the connectionist controller that best mimics a given state-action mapping (in
this case, that of the knowledge-based controller). The supervised training process is described in
Section 4. The second type, production training, is a directed search for improved state-action
mappings, using simulation-based evaluation of how well an actor achieves goals in its interactions
with the rest of the system. Real-time or on-line adaptation can be accomplished if the directed search
process is carried out faster than the time scale of the changes in the system. The production training
process is described in Section 5.

Three classes of training methods, based on regression, gradient descent, and directed search, are
examined in this paper. Regressive methods provide extremely efficient supervised training of the
multi-linear network.  They are used to find the optimal solution, which is useful in evaluating the
gradient descent and directed search methods. The regressive training methods are examined in
Section 6.

Gradient descent methods are used in most applications of supervised neural network training,
and as such are well characterized. They are not generally effective in production training, since there
will be many local optima, and since the gradient can not be implicitly obtained. Gradient descent
methods can provide a standard of comparison for the directed search methods. The use of gradient
descent methods for supervised training of a multi-linear network ABL fire controller is developed in
Section 7.

Directed search methods can be applied to both supervised and production training. Three
directed search methods are examined in Section 8: forward-biased pivot offset with simulated
annealing, downhill simplex, and genetic algorithms. Each of these methods is compared with the
gradient descent methods for supervised training, based on the required number of performance
evaluations. These directed search methods are also evaluated for production training. Automatic
discovery of improved controllers is demonstrated. Several examples are provided in which the fire
controller  adapts its behavior to modifications in environmental conditions.

2. The Airborne Laser Fire Controller

2.1 The Airborne Laser theater ballistic missile interceptor.
The ABL is a system that intercepts theater ballistic missiles during their boost phase [8,9]. It

consists of a dedicated wide-body aircraft, a high power laser, an optical train culminating with a
turret mounted transmitting mirror, and a suite of sensors and missile trackers. Since the reach of the
system is several hundred kilometers, these intercepts can take place over enemy territory while the
ABL itself remains in friendly airspace. The system thus can protect large areas and troop formations
from missiles capable of carrying any of a variety of munitions. In operation, an ABL flies out to a
designated region of airspace and begins a surveillance pattern. As missiles are detected, they are
entered into a track file maintained on the ABL. The laser can fire at one missile at a time.

When there are multiple missiles in the track file, the overall performance of the ABL depends on
how intelligently it chooses the target engagement order. Because of uncertainty in the burn-out time
of the missiles, the merit of a particular target selection order contains a stochastic component and
can not be definitely evaluated. There is some likelihood that a missile will burn out during ABL
engagement, thus surviving to deliver its payload. As the number of missiles in the track file gets
large, the number of permutations in the firing order quickly becomes too large to evaluate all of the
possibilities. The ABL fire controller has the task of selecting which missile (out of possibly dozens in
the track file) to engage next, in the presence of uncertainty, and without the possibility of evaluating
the exact merits of the choices.

2.2 The knowledge-based ABL fire controller.
A knowledge-based fire control strategy emerged during the conceptual development of the

ABL. This baseline expert fire controller selects that target in the track file which is evaluated to
require the shortest amount of time to destroy. The destruction time estimate is the sum of the slew
time (to rotate the turret so it points toward the target) and the dwell time (to accumulate a lethal
fluence with the deliverable intensity). The deliverable intensity is a complicated function of a
number of parameters: the range to target, the target altitude, the azimuth angle from the nose of the
plane to the target, the target aspect angle, target and platform velocities, atmospheric conditions, etc.
This expert fire controller requires high fidelity atmospheric propagation and missile engagement
models, so that it can accurately evaluate the deliverable intensity [10-12]. The priority of a target is
taken as the inverse of its estimated time-to-kill. The controller evaluates the target priority value for
each missile in the track file, and selects that missile with the highest value. The target priority as a
function of range to target and target altitude is shown in Fig. 1, for targets on bore-sight, with
representative values taken for the remaining parameters. The ridge structure that appears between 10
and 15 km target altitude is due to a layer of strong atmospheric turbulence located at the
tropopause. This knowledge-based expert controller has been used in several major ABL simulations
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[13-15], and was able to perform at about the same level as a human operator manually selecting
targets on a simulated ABL console [16].
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Figure 1. The target priority assigned by the shortest time-to-kill knowledge-based fire
controller, as a function of the range to target, and the target altitude, for targets on bore-
sight (no slew), and other target parameters fixed at representative values.

2.3 Simulation-based evaluation of the fire controller performance.
A simulation package ELASTIC (Evolutionary Los Alamos Simulation-based Training for

Intelligent Controllers) was developed to evaluate the performance of various controllers. ELASTIC
provides a collection of C++ classes that model the various entities in missile defense. The kernel of
the simulation evaluates the number of missiles killed in a sortie. In a sortie, an airborne laser flies to
its designated loiter area and begins surveillance. Theater missiles are launched at unknown times,
from unknown launch locations, and to unknown targets. The launch zone, target zone, number and
type of missiles are selected for consistency with a scenario of interest. The scenario used here has a
rectangular missile launch zone, 400 km wide and 200 km deep. The ABL is restricted to a
rectangular area 240 km wide and 50 km deep. The launch zone and loiter box are 200 km apart.
The missiles are launched in the general direction of the loiter box, with an angular spread of ±25°.
ELASTIC generates random missile launch scripts consistent with the scenario. The missiles are flown
with a 4 degree-of-freedom trajectory model, in order to obtain sufficient fidelity. The ABL system
parameters (laser power, beam transmitter aperture, etc.) were selected to provide roughly a one-half
or two-thirds intercept probability.

A nominal salvo was arbitrarily fixed at 100 missiles launched within a three minute period. The
missiles have a fly-out range of between 400 and 600 km. In order to obtain statistical significance,
ten independent salvos are simulated for the evaluation of each trial controller, for a total of 1000
missiles. The simulation has been implemented on several computers. On a Macintosh Quadra, 90.0
sec of computing time are required to simulate these 10 sorties and get a performance evaluation of a
trial controller. On a DEC alphaStation, an evaluation requires 1.71 sec, while 1.95 sec are required
on an HP Apollo series 735 work station.

The same 10 sorties are used to evaluate the various controllers. The shortest time-to-kill fire
controller intercepts 625 out of these 1000 missiles. For comparison, a fire controller that selects the
next target at random only intercepts 512 of these 1000 missiles. A case was simulated in which the
missiles were launched with long time intervals, so that there was never more than one target for the
fire controller to choose from. In this case, the ABL intercepts 750 out of 1000 missiles. For this
particular geometry, 250 of the 1000 missiles are not engageable regardless of the fire controller,
because they are too far away, or because the plane is heading the wrong way when they are
launched.

The accuracy of a performance evaluation based on simulation of 1000 missile engagements is
characterized as follows. Assume that 250 of the 1000 missiles are unengageable. Of the remaining
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750 missiles, 625 are intercepted in a particular evaluation. The intercept probability for engageable
missiles is then estimated at p=0.833. The unbiased estimator of the standard deviation [17] of the
number of missiles intercepted out of the 750 engagable would be given by 750[p(1-p)/749]1/2 =
10.2. The estimation of the performance of the controller after a simulation of 1000 engagements is
thus 625 ± 10.2. A series of 20 independent simulations of 1000 engagements each, using the
shortest time-to-kill controller, had an actual standard deviation of 9.3 missile intercepts.

There are several obvious approaches for improvement of this baseline fire control algorithm.
One such approach would employ an estimate of the probability that a missile receives a lethal
fluence prior to burning out. The target selection would then be based on maximizing the kill
probability per unit time. In a chess-like approach, all targets in the track file would be evaluated for
estimated time-to-kill or kill probability per unit time. The best three or four might then be evaluated
at higher fidelity, looking at all firing order permutations. There is also information about missile
clustering that might be used. These manual knowledge engineering approaches to improving the fire
controller are not pursued in this paper. Instead, the baseline fire controller is transformed into an
adaptable structure, which then learns better behavior automatically.

3. The Multi-linear Net

The knowledge-based fire controller described above provides a mapping from several target
parameters into a target priority value, for each missile in the track file. The target priority was found
to depend strongly on just three parameters: the range to target, the target altitude, and the required
turret slew angle. A starting guideline for designing the structure of an adaptable representation of
the fire controller is that it takes these three parameters as inputs, and generates an output that
characterizes the priority of the target. The controller input {xk} is a vector of these three target
parameters, roughly normalized onto the interval (0,1). x1 represents the ground range from the ABL
to the target. x2 represents the target altitude above the ground. x3 is the normalized angle from the
current beam turret bearing to the target bearing. The input parameters are summarized in Table 1.
The actual parameters (range, altitude, slew angle) map linearly onto the controller input parameters,
{xk}. A missile altitude of 25km, for example, corresponds to x2= 0.308.

parameter interpretation of
small value (0)

interpretation of large
value (1)

x1 range to target
(km)

near
100 km

far
700 km

x2 target altitude
(km)

low
5 km

high
70 km

x3 slew angle
(deg)

on bore-sight
0 deg slew

off bore-sight
120 deg slew

Table 1. The ABL fire controller input parameters

An adaptable structure that assigns an adjustable priority value to various regions of the input
space is capable of representing the knowledge contained in the original controller. A multi-linear
expansion, implemented as a connectionist network, is ideally suited for representing knowledge with
this structure [8]. The multi-linear net is a special case of a functional link net [18], in which the
expansion functions are localized in the input space, rather than formed by various polynomials. It
can also be seen as a non-radial variant of a radial basis function expansion network. It can be
considered to be a three layer network. The first layer has one input neuron for each of the three
target parameters. The input neurons can perform the normalization of the input parameters, or
simply receive pre-normalized parameters. Each neuron in the second layer corresponds to a
particular region of input space. The second layer has one neuron per expansion function, the output
of which indicates to how close the input state is to the corresponding region of input space. If the
input vector matches one of the expansion function centers exactly, the corresponding node will have
a value of 1, while all other second layer nodes will have a value of 0. The third layer is an output
node which produces a linear combination of the second layer outputs. The weights of the output
layer are adjustable, and have a semantic interpretation as the target value of the corresponding
regions of input space.

Any linear transformation of one input x to output y can be written y = w1 1− x( ) + w2x . This
can be seen as a linear combination of two functions of x, namely h1=1-x and h2=x. The expansion
coefficients have semantic meaning as follows: w1  is the output when the input is low (x=0), and w2
is the output when input is high (x=1). When the input value is high, the first expansion function has
a value of zero, while the second has a value of one. This linear transform can be extended to
characterize more than two input states. For example, if {w1,w2,w3} represents the output for {low,
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medium, high} input values, the expansion can be written
y = w1T x − 0( ) + w2T x − 0.5( ) + w3T x −1( ) . T(x) is a triangular expansion function given by
MAX(0,1-|x/b|) where b is the triangle half-base. For n uniformly spaced centers, b is given by 1/(n-
1). This expansion can also be extended to more than one input dimension, whereupon it becomes
the multi-linear expansion. This extension is accomplished by forming all the products of expansion
functions, one from each input dimension. The total number of expansion functions, H, is the
product over all input dimensions, of the number of expansion centers in the input dimension. For
the case of 3 input dimensions, where the input set is {x1, x2, x3}, expanding on two centers in each
dimension (at 0 and 1) gives a 2x2x2 multi-linear network with the expansion functions [8]

h1 = (1-x1) (1-x2) (1-x3)
h2 = x1 (1-x2) (1-x3)
h3 = (1-x1) x2 (1-x3)
h4 = x1 x2 (1-x3)
h5 = (1-x1) (1-x2) x3

h6 = x1 (1-x2) x3

h7 = (1-x1) x2 x3

h8 = x1 x2 x3 (1)

An expansion of each of three dimensions into “low”, “medium”, and “high” regions would give
H=3x3x3=27 expansion functions. T(x) can be interpreted as a fuzzy membership function,
describing how much an input parameter falls into a particular category, although the product
formulation of the expansion functions differs from the traditional minimum formulation of fuzzy
logic [19]. There are configurations in which the locations of the expansion function centers are
adaptable [8], but these have not been pursued for this paper.

The net output is a linear combination of these functions of the input vector, with the coefficient
of the jth  expansion function being called wj. The net output is

  
y = w jh j

j=1

H

∑ =
r 
w ⋅

r 
h (2)

Vector notation will be used to represent any set of H quantities that correspond to the H expansion
functions, such as the set of weights, w, connecting the second layer nodes to the output node, or the
set of second layer node values, h. Any functional mapping (except one with an infinite number of
discontinuities) can be represented by this type of expansion, as long as enough centers are used. A
great advantage the multi-linear network has over nonlinear connectionist configurations like a multi-
layer feed-forward network is that it can have a direct correspondence to a rule set. For example, the
rule “IF (x1 is low and x2 is low and x3 is high) THEN target value is low” could be implemented by
setting the corresponding weight (w5 in the above 2x2x2 network) equal to 0. Likewise, if a multi-
linear net learns some set of weights, the corresponding knowledge can be directly extracted.

4. Supervised Training

The behavior of the connectionist controller is completely determined by the values of its
weights. Supervised training is the process of adjusting the network weights until the response of the
network mimics the response of the expert. A first approximation of the weights can be obtained by
evaluating the expert response when the input matches one of the expansion function centers exactly.
For example, as seen in Fig.1, the expert controller assigns a target priority of 0.82 to a target that is
near, low, and on bore-sight (i.e. an input vector {0,0,0}). For this set of inputs, the first expansion
node output, h1, has a value of 1, while all the other nodes have a value of 0. If the first weight is set to
0.82, the network will give exactly the same response as the expert controller for this particular input
state. Each of the H weights can be obtained, using the expert controller output values at the
corresponding expansion function centers. The target priorities obtained at the centers of the 2x2x2
eight expansion function network are shown in Table 2.
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j         x1          x2          x3          w[j]   
1 0 0 0 0.82 near/low/on-bore-sight
2 1 0 0 0.0 far/low/on-bore-sight
3 0 1 0 1.78 near/high/on-bore-sight
4 1 1 0 0.16 far/high/on-bore-sight
5 0 0 1 0.30 near/low/off-bore-sight
6 1 0 1 0.0 far/low/off-bore-sight
7 0 1 1 0.38 near/high/off-bore-sight
8 1 1 1 0.12 far/high/off-bore-sight

near far near far
high 1.78 0.16 0.38 0.12
low 0.82 0 0.30 0

on-bore-sight off-bore-sight
Table 2. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-
linear network, obtained by evaluating the rule-based controller output at the expansion
function centers, in list and tableau forms.

The performance of the multi-linear fire controller with these weights was evaluated as follows. A
2x2x2 network had its weights set to these values. The network was then used as the fire controller in
a simulation of 10 sorties of 100 missiles each. The ABL with this fire controller intercepted 560 of
the 1000 missiles. The 8 expansion function network is in essence interpolating on eight points that
match the rule-based controller exactly. The network thus obtained does not perform as well as the
rule-based controller itself (which intercepts 625 of the 1000 missiles) although it does perform
better than random target selection (which intercepts 512 of the 1000 missiles.)

The multi-linear network can be made to match the expert to any desired accuracy by using
enough expansion functions. Table 3 shows the performance of various sized multi-linear networks,
with weights found by evaluating the rule-based controller on the expansion function centers. For
example, when the ground range to target is expanded onto seven centers (i.e. very near, near,
somewhat near, medium range, somewhat far, far, very far), and the target altitude and turret slew are
expanded into seven and three centers, respectively, the resulting 147 expansion functions very nearly
match the rule based controller performance.

H configuration intercepts
8 2x2x2 560

27 3x3x3 562
32 4x4x2 616

147 7x7x3 617
rule-based 625
Table 3. Performance of various sized multi-linear networks, initialized to match rule-
based controller on expansion function centers, against 10 sorties of 100 missiles each.

In general, supervised training is an attempt to adjust the weights so that the network response best
mimics a given controller over the whole input domain, rather than just at the expansion function
centers. This is accomplished with the intermediary device of a training set, consisting of pairs of
input vectors and the associated expert controller output. A training set can be obtained by collecting
historical data, by polling experts, by experimental measurements, or as in this case, by a evaluating a
knowledge-based controller over a set of input values.

The following index notation will be used, with no implicit summation over repeated indices:
xik ≡ kth  component of the ith  training input parameter set
{xi1 , xi2 , ..., xiD} the ith  training vector, representing a particular controller input
ti ≡ the expert controller output given the ith  training vector as input
hij  ≡ the value of the jth  expansion function produced by the ith  training vector
yi ≡ the network output for the ith  training vector
wj ≡ the jth  weight of the multi-linear network
D ≡ dimension of the input state vector
H ≡ number of expansion functions
N ≡ number of training set pairs

A baseline training set of 1000 vector - output pairs was generated, where each vector contains
three parameters selected at random from ranges consistent with the simulated scenario, and each
output is the corresponding expert controller target priority. The expansion functions of the network,
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such as those given in (1), are evaluated for each training vector, to get the hij . For a given set of
weights, wj, the network output for the ith training vector is

yi = w jhij
j =1

H

∑
(3)

The mean square error, Q, for a particular set of weights and the given training set, is

Q = 1
N yi − ti( )2

i =1

N

∑ (4)

Supervised training is a search for the set of weights that minimize Q. An efficient formulation for
evaluating Q is obtained by expanding (4) and pre-summing over the training set:

Q = 1
2

j =1

H

∑
k =1

H

∑ w jwkAjk −
j =1

H

∑ w jbj + c  (5)

where A  is a symmetric H by H matrix with elements Ajk = 2
N hijhik

i =1

N

∑ , and b is a vector of H

elements, with elements b j = 2
N tihij

i =1

N

∑ , and c = 1
N t i

2

i =1

N

∑ . For H=27 expansion functions and a

training set with N=1000 training pairs, it takes 8.48 seconds to compute A , b, and c, and then 0.010
sec for each evaluation of Q with (5) on a Macintosh Quadra.

5. Production training

In complex systems consisting of many interacting agents, the merit of the control strategy
employed by one of the agents can be evaluated only by observing the system itself, or a simulation
of the system. The merit of a controller is judged by how well it accomplishes its assigned goals as it
interacts with other entities in a complex environment (i.e. in production). Production training differs
from supervised training in that there is no given correct response for a given controller input vector.
The production training process is a directed search for improved control strategies, in which trial
controllers are generated from previous controllers, based on their performance evaluation. The
performance of trial controllers is evaluated with the simulation package ELASTIC, described above.
A performance evaluation based on simulation of 1000 engagements takes 90.0 sec on a Macintosh
Quadra. A production evaluation of a controller performance requires 9000 times the computational
resources of a performance evaluation of the kind used for supervised training.

With a faster computer, on-line adaptation becomes feasible. For example, this simulation-based
performance evaluation takes 1.71 sec on a DEC alphaStation. If production training can discover
better controllers by evaluating 500 trial controllers, this system would be able to adapt to changes
that occur in the environment on a 15 minute time scale.

6. Multi-linear Regression

Supervised training of a multi-linear network can be accomplished with efficient and robust
regression methods. This opens a variety of possible applications for multi-linear networks, in which
rapid supervised training is more important than the non-linear capabilities of other connectionist
architectures. These regressive methods produce the set of weights that exactly minimize the mean
square error between the net and the training set. This exact solution is used in the assessment of the
gradient descent and directed search methods that follow. The regressive methods are not otherwise
relevant to production training.

The mean square error between the multi-linear network output and the training set for a
particular set of weights was given in (4). The gradient of this mean square error is found by
differentiating (4) with respect to weights. The jth  component of the gradient of the mean square
error is
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G j ≡
Q

w j

= 2
N ( wk ⋅ hik

k =1

H

∑ − ti )hij
i=1

N

∑ = wk
k=1

H

∑ Akj − bj (6)

In vector notation, the gradient of the mean square error is

  
r 

G =
r 
∇ Q =

r 
w ⋅

t 
A −

r 
b (6a)

A  and b are independent of the weights. The set of weights that minimizes the mean square error is
found by setting each component of the gradient to zero. This gives a set of H equations known as
the normal equations. The weight vector that minimizes Q is obtained by inverting the normal matrix,
A .

w j = A jk
−1bk

k =1

H

∑ (7)

When the problem is well posed, A  is a symmetric, positive definite matrix [20]. In this case, the
matrix can be inverted by the very efficient Cholesky decomposition method. The Cholesky
decomposition of A , and the vector of weights corresponding to a given b, are found using modified
versions of the routines choldc and cholsl [17]. For the eight expansion function network, with the
1000 pair training set described above, the weights obtained by Cholesky inversion of the normal
matrix are shown in Table 4. The optimal weight vector gives an rms error over the training set (i.e.
the square root of Q) of 0.0736146. While this set of weights no longer matches the expert controller
at the expansion function centers, it provides a better mimicry over the whole input domain.

near far near far
high 2.48 -0.50 -0.56 0.95
low 0.63 -0.57 0.18 -0.11

on-bore-sight off-bore-sight
Table 4. The weights that minimize the mean square error of a 2x2x2 multi-linear
network relative to the 1000 training pair training set, obtained by Cholesky inversion of
the normal matrix.

A 2x2x2 network had its weights set to the values that minimize the error with respect to the 1000
pair training set (shown in Table 4). The network was then used in the fire controller in a simulation
of 10 sorties of 100 missiles each. The ABL with this fire controller intercepted 586 of 1000 missiles.
The 8 expansion function network which best mimics the rule-based controller does not perform as
well as the rule-based controller itself (which intercepts 625 of the 1000 missiles) but it does perform
significantly better than the 2x2x2 network which had its weights initialized on the eight expansion
function centers.

 If the normal matrix happens to be nearly singular, direct inversion is problematic [17,18,20]. In
this case, singular value decomposition can be used to invert the normal matrix, A , or the design
matrix (the N by H matrix with elements hij). The singular value decomposition of the design matrix,
and the vector of weights corresponding to a given ti, are found using modified versions of the
routines svdcmp and svbksb [20]. The normal matrix can also be inverted by singular value
decomposition. This method produces the same number of singularities as singular value
decomposition of the design matrix. When the matrices are not singular, the same weight vectors are
generated. When the matrices are singular, different weight vectors are obtained, but both give the
same output when used in (2).

The relative computational requirements of these three regressive methods have been examined
for the case of a 3x3x3 multi-linear network (H=27), with 1000 training pairs. The roughly 1.5
million multiply-and-adds needed to set up A  and b require 8.48 sec on a Macintosh Quadra.
Cholesky inversion of the 27x27 normal matrix then requires 0.066 sec, while singular value
decomposition of the normal matrix requires 1.38 sec. 41.5 sec are required to set up the 1000x27
design matrix, and a further 36.7 sec to invert it by singular value decomposition.

 7. Gradient Descent Training Methods

The regressive methods provide a direct solution for the set of weights that gives the multi-linear
network that best matches the training set. In other widely used connectionist configurations, there is
no relation like (7) that can be solved for the optimal set of weights, but there are explicit
formulations for the mean square error, and for the gradient of the mean square error with respect to
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the weights, analogous to (5) and (6). Given a set of weights, the gradient can be used to generate a
new set of weights that ought to have a better match to the training set. An adaptable controller can
then be trained by an iterative generation of improved weight sets. Supervised training with any of
several gradient descent methods (e.g. greedy hill climbing or conjugate gradient methods, with back
propagation of errors used to find the gradient) make up the majority of neural network applications,
and are well characterized [18]. Representative gradient descent methods were evaluated for
supervised training of the multi-linear network on a training set produced with the knowledge-based
controller.  These methods are characterized by how many evaluations of the mean square error are
required to reach a solution close to the optimal solution. Even though gradient descent approaches
are not suitable for general production training, they can be used as a standard of comparison for the
directed search methods that are suitable for production training.

7.1 Gradient descent with individually presented training pairs.
A common gradient descent supervised training method works as follows. One of the training

pairs, say the ith  one, is selected. For a given vector of current weights w, the square error between the
network output for the ith training pair input, and the actual  ith  training pair output value is

  
q =

r 
w ⋅

r 
h − t( )2

(8)

The gradient of this square error with respect to the weights is

  q /
r 

w = 2(
r 
w ⋅

r 
h − t)

r 
h (9)

A second order Taylor series expansion of (8) about the current weight vector gives a quadratic
approximation for the square error as a function of an increment to the weight vector:
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By expanding (10), using (8) and (9), and assuming that the weight vector increment is in the
direction opposite to the gradient of q, the weight vector increment that gives a zero error value in
(10) is easily found to be

  
r 
w =

t −
r 
w ⋅

r 
h ( ) r 

h 

h2
(11)

A multi-linear network using a weight vector formed by adding the increment in (11) to the
original weight vector would give a good output value for the current training vector, but would
degrade performance for other training pairs in the training set. This increment is therefore reduced
by a factor known as the learning rate, η, so that some of the previous training is retained. The
increment to the jth weight resulting from presenting the ith training vector is thus

wj =
(ti

l =1

H

∑ − wlhil)hij

hik
2

k =1

H

∑
(12)

In an epoch, all the training pairs in the training set are presented in sequence, and the weights are
incremented after each presentation using (12). The learning rate is initially set to a value of 1.0, to
rapidly get to the neighborhood of the solution, and then gradually reduced to provide for
convergence. The annealing schedule by which the learning rate is reduced depends on the particular
training set, and generally requires some trial and error adjustments. For the 1000 training pair set
derived from the knowledge-based fire controller, a power law annealing schedule, in which the
learning rate is reduced by a factor of 0.9998 after each training pair, was found to be effective.

This individually presented gradient descent method was used for supervised training of a 2x2x2
multi-linear network, using the 1000 pair training set described above. The eight weights were
initialized to zeros, which gave a starting root mean square error of 0.4308. It took 27 epochs to
reach a set of weights that produced a root mean square error of 0.07435 (within 1% of the optimal
solution value of 0.073614 obtained by Cholesky inversion). This method thus requires an equivalent
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of 27000 trial weight vector evaluations, 27000 gradient evaluations, and 27000 estimates of the
increment size. If it is supposed that the gradient could not be implicitly evaluated, it might be
expected that the weight vector increment corresponding to each training pair would require eight
evaluations of q to estimate the gradient, plus six or ten more evaluations to bracket the minima in the
gradient direction. Application of this approach without the implicit gradient information of (9)
would require on the order of  500,000 trial evaluations to reach within 1% of the solution. Note,
however, that these are not evaluations of the performance of the controller over the whole input
domain, but rather evaluations of the controller response at a single input state.

The benefit provided by initializing the weights to a good starting vector was then examined by
starting with the weights initialized to the values of the expert controller on the expansion function
centers (from Table 2). The training still required 27 epochs to reach a solution within 1% of the
optimal solution. The weight vector gets to the right neighborhood within a few hundred training pair
presentations, regardless of its starting point.

7.2 Batch mode gradient descent training.
An alternative gradient descent approach uses the entire training set at once to generate a new trial

weight vector. The mean square error over the whole training set is given in (4), while the gradient of
this mean square error (with respect to the weights) is given in (6).  As in the individually presented
training pair case, the mean square error can be expanded about the current weight vector into a
second order Taylor series. The various terms in the Taylor series can be expressed in terms of A , b
and w, again constraining the weight increment to the direction opposite the gradient. The weight
increment that minimizes the second order expansion of Q is found to be

  
r 
w =

−G2
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G r 
G ⋅
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(13)

Again, a learning rate is used to aid convergence, and the weight increment in index notation
becomes

wj =
− Gj GkGk

k = 1
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∑
 (14)

This batch gradient descent method was used for supervised training of the 2x2x2 multi-linear
network, using a learning rate of 0.9.  The weights were initialized to the rule-based values on the
expansion function centers. The initial rms error between the multi-linear net and the training set
output values was 0.21645. This method required 49 training epochs to reach a solution with an rms
error of 0.07435 (i.e. 1% more than the least rms error solution).  If the weights are instead initialized
to zeros, this batch gradient descent with implicit increment size estimation requires 59 epochs.

The equivalent number of fitness evaluations (i.e. evaluations of Q) can now be estimated to
characterize cases in which the gradient and estimated weight increment size are not available
implicitly. Assuming that H additional evaluations of Q would be required to estimate the gradient,
and again allowing six to ten evaluations to bracket the minima in the direction of the gradient, gives
that these 49 epochs would require the equivalent of around 800 evaluations of Q for this batch
gradient descent method to find a solution within 1% of the best solution. In this batch approach,
each evaluation reflects the performance of the controller over its entire domain.

8. Directed Search Training Methods

In directed search methods, new trial solutions are generated from previous trial solutions and
information about the performance of those previous trial solutions. Directed search methods can be
used for supervised training. In production training, where gradients may not be well defined and
where there may be many local optima, directed search methods might be the only means of
improving adaptable controllers. Three directed search methods have been examined: pivot and
forward-biased random offset with simulated annealing, downhill simplex, and the genetic algorithm.
These methods are compared with the gradient descent approach for supervised training. They are
also characterized for production training.

8.1 Directed search by pivot and forward-biased random offset.
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The pivot and random offset method starts with a weight vector (the pivot), and evaluates the
performance of the corresponding multi-linear network controller. This performance is given by the
mean square error relative to a training set for supervised training (i.e. by evaluation of (5)), and by a
simulation-based performance evaluation for production training. An offset is obtained by applying
a random increment to the pivot weight vector, and the performance of the offset is evaluated. If the
performance is improved, the offset weight vector is accepted as the new pivot. Otherwise, a new offset
is tried. When a successful offset is found, the next trial weight vector offset is biased toward the same
direction.

The weight vector increment consists of a forward biasing component plus a random increment to
each of the H weights. The forward biasing component is equal to one half of the last successful
increment. The random component is selected from a uniform distribution in the interval (-ω, ω),
where ω is implemented as an adaptive parameter. The algorithm for adjusting ω increases ω by 2%
when the offset performance exceeds the pivot performance, and decreases ω by 2% when the offset
performance is worse than the pivot performance. If ω becomes too large (>0.5) or too small
(<0.001), it is reset to an intermediate value (0.05).

The performance of this pivot-offset method is stochastic, depending on the initial random seed
used to generate the random weight increments. For supervised training in the 8 expansion function
case with 1000 training pairs, with the weights initialized to zeros, a series of 10 independent pivot-
offset searches required as few as 317 performance evaluations, or as many as 2002 to converge to a
solution with rms error within 1% of the error of the optimal solution. The mean requirement for the
10 searches was 1152 evaluations. This compares to the equivalent of about 800 evaluations required
to reach this accuracy with the batch gradient descent method. If the initial set of weights is set to the
values obtained at the corresponding expansion function centers with the knowledge-based controller,
the required number of performance evaluations ranges from 278 to 1392, with a mean (in 10 runs)
of 920. A good starting weight vector improves the search efficiency.

A simulated annealing approach has been implemented to allow escape from local optima that
typically arise in production training. The offset is always accepted if its performance exceeds that of
the pivot. With simulated annealing, the offset is also occasionally accepted when its performance is
worse. The probability of acceptance of a worse solution depends on a “temperature” parameter, T,
which has the same units as the measure of performance. The implementation of the acceptance
criteria is: in a search for increased performance, if the performance of the offset exceeds the
performance of the pivot plus the temperature times the natural log of a uniform random variate
between 0 and 1, the offset is accepted as the new pivot. In a search for smaller measure of
performance (e.g. search for smaller Q), if the measure of performance of the offset is smaller than
the measure of performance of the pivot minus the temperature times the natural log of a uniform
random variate between 0 and 1, the offset is accepted as the new pivot. This produces a series of trial
controllers that has a Boltzmann distribution of performance [17, 18, 21]. The temperature is reduced
by a constant factor after each performance evaluation (producing a power law annealing schedule),
gradually reducing the likelihood of accepting a worse offset. Simulated annealing degrades
supervised training of a multi-linear network, because there is only one minima.

This pivot-offset method was applied to production training, using simulation of 10 sorties with
100 missiles each to evaluate the trial multi-linear network fire controllers. A 2x2x2 multi-linear
network was used, with weights initialized to the expansion function center values of the shortest time-
to-kill knowledge-based controller. The initial temperature was set at 5 missile kills. The annealing
schedule reduced the temperature by 0.975 after each performance evaluation, so that by the 150th
evaluation, worse offsets were rarely accepted. The pivot-offset directed search found a weight vector
that intercepted 667 of the 1000 missiles, after evaluating 500 trial weight vectors. This is
significantly better than the performance of the original knowledge-based controller. The weights of
the adapted controller are shown in Table 5. In comparison with the original controller, characterized
in part in Table 2, the adaptable controller has learned that better performance is obtained by
reducing the priority of low targets in general, except far, off-bore-sight ones, and increasing the
priority of high, near, off-bore-sight targets.

near far near far
high 2.27 0.06 1.27 0.04
low -0.27 -1.03 -0.33 0.61

on-bore-sight off-bore-sight
Table 5. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-
linear network, obtained by a forward biased pivot-offset search, with simulated annealing,
evaluating 500 trial sets of weights.

8.2 Directed search by Downhill Simplex.
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Instead of tracking two weight vectors (pivot and offset), the simplex method uses H+1 weight
vectors which form a “simplex” in the H dimensional weight vector space. In an iterative process, the
worst corner of the simplex (that weight vector which gives the worst controller performance) is
moved to the “opposite” side of the simplex, or failing that, in “toward” the center of the simplex.
For supervised training, the performance of a weight vector is the mean square error relative to the
training set, evaluated with (5). The downhill simplex search is performed with modified versions of
the routines amoeba and amotry   [17]. This method requires about the same computational time for
each performance evaluation as the pivot-offset method.

The number of evaluations required to attain a solution with an error within 1% of the  error of
the optimal solution was observed to be a sensitive (in fact, chaotic) function of the starting simplex
vertices. One vertex was taken as the origin (all weights set to zero). The other H vertices of the initial
simplex had one of the H components incremented by δ, and the rest unchanged, where δ is an
adjustable parameter.  For 10 different values of δ, ranging from 0.2 to 0.4, the number of required
evaluations ranged from 226 to 572, with an average requirement of 377 evaluations. This compares
to 1152 for the pivot-offset method. If the initial simplex is constructed from a set of weights equal to
the true values obtained at the corresponding expansion function centers, the mean required number
of performance evaluations (averaged over 10 runs) is 305.

This downhill simplex method was applied to production training, using simulation of 10
sorties with 100 missiles each to evaluate the trial multi-linear network fire controllers. A 2x2x2
multi-linear network was used, with weights initialized to the expansion function center values of the
shortest time-to-kill knowledge-based controller. The downhill simplex directed search found a
weight vector that intercepted 676 of the 1000 missiles, after evaluating 500 trial weight vectors. This
is significantly better than the performance of the original knowledge-based controller. The weights
of the adapted controller are shown in Table 6. This set of weights is distinct from that found by the
pivot-offset search. It was verified that this set of weights is a locally optimal solution, by evaluating
the performance of 16 slightly displaced weight vectors (each having one of the 8 weights perturbed
by a small positive or negative increment). The resulting controller was also validated by evaluating
the performance of the solution against a completely independent set of 10 sorties of 100 missiles
each. In this test, the original rule-based controller intercepts  634 missiles, while the multi-linear net
obtained by the downhill simplex search intercepts  678 missiles.

near far near far
high 2.64 0.51 0.80 0.03
low -0.13 0.43 0.35 0.45

on-bore-sight off-bore-sight
Table 6. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-
linear network, obtained by a downhill simplex search, evaluating 500 trial sets of weights.

8.3 Directed search with genetic algorithms.
A third directed search approach, evolutionary programming, is based on an analogy with

biological evolution [22]. A set of trial solutions, called the population, evolves from generation to
generation. The set of weights that characterize a trial multi-linear network controller makes up the
chromosome associated with an individual. Each weight is a gene. In this application, the gene can
take any real number value. Mutation of a gene is accomplished by adding an increment which is
selected from a uniform random distribution in (-ω, ω). Two individuals can be used to breed a third
trial individual, using two point cross-over: the descendent receives the first and last parts of its
chromosome from one parent, and the middle part from the other parent, with a random location of
the cross-over points.

The members of the first generation of trial controllers are created by mutating an original set of
weights. The measure of performance, or fitness, of each of the trial controllers in the population is
then evaluated. The worst half of the population is discarded, to be replaced by new individuals. A
new individual is generated from two parents, which are selected according to their fitness. The
selection of parents is based of rank order of fitness, where the best controller in the population is five
times more likely to be selected as a parent than the worst of the remaining top half of the
population. The chromosome resulting from crossing two parents is then mutated. When the
discarded half of the population has been replaced by new individuals, the performance of these new
individuals is evaluated. This process is then iterated over successive generations.

 For supervised training, the performance of a weight vector is the mean square error relative to
the training set, evaluated with (5). The population size was set to 40, so that 20 new trial solutions are
generated and evaluated in each generation. An annealing process was used for the mutation rate.
Initially, after a new individual is formed by crossing parents, each weight of the new chromosome is
incremented with a maximum increment of 0.1. The maximum increment is reduced by a factor of
0.99 after each generation, so that less and less mutation is occurring as the search converges to a
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solution. This genetic algorithm search was applied for a 2x2x2 multi-linear network, using the 1000
pair training set described above. The initial population was obtained from mutants of the weights
obtained by applying the original rule-based controller at the eight expansion function centers (Table
4). 28 independent searches were undertaken. The worst of these required 6160 trial evaluations to
reach a solution within 1% rms error of the optimal solution, while the best required 1620. The
average requirement was 2564 performance evaluations.

This genetic algorithm was applied to production training, using simulation of 10 sorties with
100 missiles each to evaluate the trial multi-linear network fire controllers. A 2x2x2 multi-linear
network was used, with weights initialized to the expansion function center values of the shortest time-
to-kill knowledge-based controller. The genetic algorithm directed search found a weight vector that
intercepted 678 of the 1000 missiles, after evaluating 500 trial weight vectors. This is significantly
better than the performance of the original knowledge-based controller. The weights of the adapted
controller are shown in Table 7. This set of weights is distinct from that found by the other searches.
It was verified that this set of weights is a locally optimal solution. The new solution was validated by
evaluating its performance against a completely independent set of 10 sorties of 100 missiles each. In
this test, the original rule-based controller intercepts  634 missiles, while the multi-linear net obtained
by the genetic algorithm search intercepts  682 missiles.

near far near far
high 2.48 -0.01 -0.34 1.33
low -0.17 -0.10 0.47 -0.27

on-bore-sight off-bore-sight
Table 7. The weights assigned to the eight expansion function nodes of a 2x2x2 multi-
linear network, obtained by a genetic algorithm search, evaluating 500 trial sets of
weights.

8.4 Demonstration of automatic adaptation to environmental changes.
A 4x4x2 multi-linear network (4 expansion centers in ground range to target and target altitude,

2 in slew angle) was constructed and initialized by setting the weights equal to the shortest time-to-kill
controller output. As shown in Table 3, a fire controller using this network was able to intercept 616
missiles of the 1000 missiles in simulation of 10 sorties of 100 missiles each. The multi-linear
network output is shown in Fig. 2 for this initial set of weights, as a function of x1  (normalized range
to target) and x2 (normalized target altitude), for x3 = 0 (target on bore-sight). Comparison with Fig.
1 shows how well this H=32 multi-linear network mimics the original controller, at least on bore-
sight.
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Figure 2. The output of a 4x4x2 multi-linear network fire controller, as a function of x1

(normalized ground range to target) and x2 (normalized target altitude), for x3=0 (target
on bore-sight), where the weights are set to the shortest time-to-kill values on the
expansion function centers.

This multi-linear network fire controller was then evolved using the genetic algorithm directed
search, using simulation of 10 sorties with 100 missiles each to evaluate the trial multi-linear network
fire controllers.  After evaluating 500 trial controllers, a new controller was discovered that was able to
intercept  684 of the 1000 missiles. Further search (5500 trial evaluations) found a new controller
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that intercepted 690 of the 1000 missiles. Additional search (to 75,420 evaluations) found no further
improvement. The output of this new controller is shown in Fig. 3, again as a function of x1 and x2,
for x3 = 0.
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Figure 3. The output of a 4x4x2 multi-linear network fire controller, as a function of x1 (normalized
ground range to target) and x2 (normalized target altitude), for x3=0 (target on bore-sight), after
directed search for improvements.

The above fire-controller has optimized its behavior for a scenario with 100 medium-range (400
to 600 km) missiles per sortie. The environmental conditions were then changed to the scenario in
which a sortie consists of 50 medium-range missiles and 50 short-range (250 to 350 km) missiles.
These short-range missiles burn out at a lower altitude, and at an earlier time, making them harder to
intercept. The contingency for defense against short range missiles had in no way been pre-
programmed into the controller. The traditional approach to adapting the behavior of a knowledge-
based controller is to assemble a group of experts to add knowledge to the controller to prepare it for
the new environmental conditions. The multi-linear network controller with simulation-based directed
search adaptation allows the controller to automatically adapt its behavior to the new conditions.

When the multi-linear network controller adapted to the medium-range missile only scenario is
applied to the new scenario with medium and short range missiles, it is able to intercept 581 of 1000
missiles. The genetic algorithm method was used to adapt the controller to the new scenario. Using
600 trial controller evaluations (requiring less than 15 minutes to compute on a DEC alphaStation), a
new controller was automatically discovered that intercepted 606 of the 1000 missiles. The output of
this new controller is shown in Fig. 4, again as a function of x1 and x2, for x3 = 0. Comparison with
Fig. 3 shows that the controller has adapted to the presence of short range missiles by giving
increased priority to lower altitude targets.
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Figure 4. The output of a 4x4x2 multi-linear network fire controller, as a function of x1

(normalized ground range to target) and x2 (normalized target altitude), for x3=0 (target
on bore-sight), after directed search for improvements with a modified scenario that
includes short-range missiles.

The battlefield environment again change, so that instead of having the missiles launched over a 3
minute period, 100 medium-range missiles are launched over a 5 minute period. The shortest time-
to-kill controller gives 671 intercepts of 1000 missiles for this new scenario. A genetic algorithm
directed search found a 4x4x2 multi-linear network controller that gives 704 intercepts, after
evaluating 500 trial weight vectors. Again, the adaptable controller automatically discovers a new
controller behavior that is well adapted to un-anticipated environmental conditions.

A third modified scenario had 25 simultaneous launches, from a 10 by 10 km launch zone,
located 300 km in front of the loiter box. The performance of trial controllers is evaluated by
simulating 40 independent sorties, again giving 1000 total missile engagements. The shortest time-to-
kill controller gives 337 intercepts of 1000 missiles for this scenario. A genetic algorithm directed
search found a 4x4x2 multi-linear network controller that gives 346 intercepts, after evaluating 500
trial weight vectors. It is not surprising that so little improvement can be attained for this scenario,
since there is little to distinguish the 25 simultaneously launched missiles.

9. Conclusion

A simulated battlefield with an airborne laser missile interceptor provides an excellent test-bed for
investigating controllers of entities that interact with a complex system. An approach has been
investigated for enabling the controller to adapt to its environment. The approach is to transform a
knowledge-based controller into an adaptable connectionist representation, use supervised training to
initialize the weights so that the adaptable controller mimics the knowledge-based controller, and then
use directed search with simulation-based performance evaluation to find controllers that are better
adapted to the environmental conditions. The approach has the added benefit that the new knowledge
can be directly extracted from the automatically discovered controllers.

The process of production training brings two new capabilities to the controller. First, it enables
an automated search for improvements over the baseline expert controller. In a scenario in which a
poor fire controller gives 512 intercepts, and the state-of-the-art knowledge-based fire controller
gives 625 intercepts, directed searches automatically discovered new controller behaviors that give as
many as 690 intercepts.

Three directed search methods were examined: pivot with forward-biased offset, downhill
simplex, and evolutionary programming. These methods require a means of evaluating the
performance of trial controllers, but do not require information about the gradient of the
performance with respect to the adaptable controller parameters. They have the ability to avoid
becoming trapped at poor but locally optimal controllers. All three methods successfully discovered
improved controllers. Each of the improved controllers were verified to be locally optimal. The three
controllers were nevertheless quite distinct from each other, and from the original representation of
the knowledge-based controller. The controllers discovered by directed search were validated by
evaluating their performance against independent sorties.
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The second capability brought by production training is that the connectionist controller can
develop adaptations to changes in the rest of the system. These adaptations can be developed off-line,
by production training against alternative scenarios. Real-time or on-line adaptation can be
accomplished when the directed search process is carried out faster than the time scale of the changes
in the system. Some examples of rapid, automatic adaptation to modifications in the environment
were examined. Without this directed search capability, experts would have to be assembled to revise
rule-based controllers in response to changes in the environment.

The supervised training process was found to be an important antecedent to the directed search
production training process.  This is because the directed search methods have a number of
adjustable parameters (mutation rate, step size, variability in the initial set of trial controllers,
temperature or mutation rate annealing schedule, etc.)  Good values for these parameters can be
determined during supervised training, since the performance evaluations used in supervised training
are much faster than those used in production training.

The problem space (the set of all possible input states combined with the set of all attainable rule
set mappings) was sufficiently large to demonstrate the validity of the methodology. More dramatic
improvements in performance can be obtained by using this methodology with more elaborate rule
sets and state representations. For example, including a fourth controller input that indicates the
extent to which a given missile is clustered with other missiles could allow an automatic search for
controllers that reduce the time wasted on slewing the turret.

Nothing in this process is specific to fire controllers, except the representation of the state and the
rule set mapping. This methodology of transforming a knowledge-based controller to an adaptive
structure, evolving the weights automatically in the context of a synthetic environment, and
transforming back to an improved rule-set, should apply to a wide variety of systems.
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